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The results are reported of experimental measurements of the response of xylophone bars to a
random signal applied at their centre and at one end. Empirical values are obtained with these spectra
for the frequencies, input admittances and bandwidths corresponding to the natural bending
eigenmodes of xylophone bars. The results explain the acoustical behaviour of the vibrating elements
of xylophones and show that it is possible to estimate the vibrational effects of the geometrical shapes
of such bars.
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1. INTRODUCTION

A major characteristic of xylophonic instruments is that they have wooden bars as
vibrating elements; these are graduated in length or width. This family of musical
instruments includes the xylophones, other similar instruments with lower frequency
ranges (marimbas) anc certain intermediate instruments such as the xylo-marimbas, etc.
Xylophonic instruments also include devices of similar shape but are composed of metallic
bars instead of wooden ones [1, 2] (glockenspiel, vibraphone, etc.). Despite this fairly broad
range of possibilities, the types of instruments to be studied here are only those with
wooden bars.

These musical instruments produce sounds with a well-defined pitch quality and can
therefore be tuned to a specific scale, with a bar for each musical sound or note.
Xylophonic bars are made of palissandre (rosewood), a kind of wood of high density and
stiffness (density r=1050 kg/m3, Young’s modulus along the grain direction E=19 Gpa
on average). They do not have a constant cross section, but rather have an undercut shape
similar to that of a parabolic cylinder. They are attached to the instrument by means of
two tensioned strings, which pass through two holes on each side of the bar.

Xylophonic instruments also have resonating elements, consisting of metallic tubes
located immediately below each bar. The end of the tube farthest from the bar is closed,
while that closest to the bar is open. The lengths of the tubes are graduated to ensure a
fundamental frequency equal to the corresponding bar.

Xylophone bars are excited by a mallet, which in most cases is used to hit them in their
central zone. Such mallets resemble small hammers with a spherical head, and can be made
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from a full range of materials of different hardnesses. This broad variety of mallets affords
the possibility of achieving a large range of timbre effects [3].

There is some disagreement about the classification of xylophonic instruments. The
reason for this is that there are no criteria for assessing the musical range of these
instruments. It is therefore sometimes quite difficult to make a clear distinction between
certain xylophones and their lower toned counterparts, the marimbas [1]. Consequently,
to avoid confusion, the instrument analyzed here will be referred to as ‘‘xylophonic
instrument‘‘, meaning only that it is an instrument with wooden bars as vibrating elements.

Within this general description of xylophonic instruments, their most remarkable
acoustical characterisic can be said to be their ability to produce well-defined pitch sounds.
These are generated by the flexural vibrations of the xylophonic bars when excited by the
mallets. This is why undercut bars are used instead of others the shape of which is easier
to obtain, such as constant section bars, because the latter do not exhibit a periodic flexural
vibration.

The achievement of harmonic relationships between frequencies or a dominant
periodicity with the undercutting effect has been studied in depth. In this sense, the studies
undertaken by Rossing [1, 2] merit comment. This author developed a classification of a
large variety of percussion instruments, relating the 1:4 integer relationship to low tone
xylophonic instruments, such as the marimba, and the 1:3 ratio to treble tone instruments.

Bork [4, 5], Bork and Meyer [5] and also Moore [6] have also published very interesting
experimental results in which the achievement of integer relationships between frequencies
in bars is related to several kinds of change in their shape. These works are of great interest
to instrument makers.

Finally, Orduña-Bustamante [7] conducted a study in which measurements of the
acoustical effects of precise undercut shapes are compared with calculations from
theoretical models including rotary inertia and shear stress.

The results to be presented here are those of an experimental analysis of the
physico-acoustical function of xylophonic bars. Three kinds of vibrational parameters
corresponding to natural flexural or bending eigenmodes are studied: frequencies, input
admittances and bandwidths. In terms of these parameters the periodic oscillations of
xylophonic bars, their patterns of vibration and the natural damping of their resonances
can be classified.

2. EXPERIMENTAL SET-UP

In this work a method initially developed at the Department of Speech Communication
and Music Acoustics of the K.T.H. at Stockholm [8] was used. A scheme of the
experimental set-up used in this work can be seen in Figure 1. Essentially, it is composed

Figure 1. The experimental set-up for the vibrational property measurements. 1, Dual Channel Analyzer; 2,
generator; 3, amplifier; 4, coil; 5, magnet; 6, mechanical system; 7, accelerometer; A and B, analyzer channels.
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of a Dual Channel Signal Analyzer (Brüel & Kjaer Model 2034) which has a random signal
generator with constant amplitude over an adjustable frequency range. This signal feeds
an electric coil, which excites a magnet (NdFeB) with a mass of 0.7 g stuck to the bar so
that the coil and the magnet introduce a vibration force on the bar. At another point is
located a small accelerometer (Brüel & Kjaer Model 43-74) with a mass of 0.65 g. Its signal
is integrated with respect to time and, accordingly, an electric signal proportional to the
vibration velocity of the bar can be received. Finally, the ratio between the vibration
velocity and the amplitude of random excitation versus frequency is recorded on the
analyzer.

This set-up was used to make vibrational measurements of natural eigenmodes
corresponding to xylophonic bars. Initially, the nodal lines for the natural eigenmodes of
each bar were controlled by using Chaldni’s method. In this sense, they were supported
in these zones when being tested in the experimental set-up. Consequently, free-free
boundary conditions were achieved.

In the vibrational measurements of xylophonic bars that we studied all the available
xylophonic instruments in the Department of Percussion Instruments of the
‘‘Conservatorio Superior de Música’’ Bilbao (Spain). They were two marimbas
(‘‘Concorde’’ (Holland) and ‘‘Royal Percussion’’ Studio-49 (Germany)), two xylophones
(‘‘Premier’’ (U.K) and ‘‘Royal Percussion’’ Studio-49 (Germany)), a xylo-marimba
(‘‘Royal Percussion’’ Studio-49 (Germany)) and other smaller instruments. Nevertheless,
in this work the measurements of the 44 palissandre bars comprising the ‘‘Royal
Percussion’’ (Germany) marimba will be mostly commented on, because they represent the
common behaviour of all the analyzed instruments. The musical range of this instrument
includes a chromatic scale of three octaves and a perfect fifth, from F4 ( f=347 Hz) to
C8 ( f=4180 Hz). The bars are graduated only in length (L), which ranges from 274 mm
for the F4 bar to 110 mm for C8. The width of the bars is 34 mm and the height (h) at
their ends is 20 mm. The undercut shape of these xylophonic bars varies: it is very large
for the longest bars and gradually decreases in depth and length for shorter bars. A
digitalized outline of the end bars of this marimba can be seen in Figure 2.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Initially, the nodal lines of the natural eigenmodes for each of the 44 xylophone bars
were detected. In the particular case of the fundamental eigenmode, these nodal lines are
close to the location of the holes used to fix the bars to the xylophone. Accordingly, the
system supporting the xylophone bars does not strongly perturb the fundamental
eigenmode [6]. This eigenmode is therefore the most important one for the determination
of the musical qualities of the instrument.

On making the vibrational measurements, the random responses at the centre and at
one end of each xylophone bar were obtained in a range from 0 to 12 kHz together with

Figure 2. Digitalized outlines of the end bars belonging to a Royal Percussion (Type Studio-49) xylophone. (a)
F4 tuned bar; (b) C8 tuned bar.
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Figure 3. Response spectra of a xylophone bar to a random signal located at one end. (a) A4 tuned bar; (b)
F7 tuned bar.

zooms of a minor frequency range for each flexural natural eigenfrequency. In Figure 3
are offered two examples of these spectra; the first represents a random response of the
A4 bar ( f=437·1 Hz) in a range 0–12 kHz, while the second one is the same for the F7

bar ( f=2762 Hz). These spectra were obtained by locating both magnet and
accelerometer exactly at the middle of one end of the bar. Absolute values for the input
admittance were achieved, but they have been plotted in a decibel scale related to a
reference value of 1 m s−1 N−1.

The maximum of each resonance is very well defined and is completely isolated from
its neighbours. Moreover, since the F7 bar is located in a range of frequencies higher than
the A4 bar, the frequency step between consecutive resonances is also higher, and this is
why the isolation of each resonance maximum is considerably larger.

By using these spectra, the values of the natural frequencies, input admittance, and
bandwidth corresponding to the natural flexural eigenmodes for each bar were calculated.
The experimental error in the measurements was estimated to be less than 0.5% in the case
of the the frequencies; 2% for the bandwidths and less than 1 dB for the input admittance.

The acoustical information obtained with these measurements can be summarized as
follows.
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3.1.  

The relationships between the frequencies of the first four overtones (corresponding to
flexural eigenmodes) and the fundamental frequency are plotted with respect to
fundamental frequency in Figure 4.

It can be observed that the integer relationships are 1:4 and that they are present only
between the two first frequencies and for the 17 first bars (a chromatic scale from F4

( f=347 Hz) to A5 ( f=875 Hz)). In these 17 bars the undercut is able to tune the
fundamental frequency into the desired musical sound and place the first overtone two
octaves higher. [7].

In the other bars (from A(
5 (928 Hz) to C8 (4180 Hz)), there is no harmonic value for

the f2: f1 relationship, and it decreases smoothly from the 1:4 ratio a value of 1:2·6,
corresponding to the last bar (C8). In this set of bars, the tuning of the first overtone two
octaves above the fundamental (1:4 ratio) would raise the second partial up to 4 kHz.
Thus, the instrument maker begins to find its tuning more difficult, especially for the
highest tone bars. Similar behaviour has been encountered in the xylophonic instruments
analyzed in this work.

The same line of reasoning also suffices to explain why integer relationships are not
observed for partials higher than the second one. Only a 1:10 has been encountered for
the third partial in bars tuned below 350 Hz. These low tone bars belong to a large
marimba (‘‘Concorde’’ (Holland)), and thus the 1:10 ratio has not been found in the
marimba described in this work, because its range begins from 347 Hz (F4). Nevertheless,
an average value of 1:9·2 for the lowest eight bars—which decreases smoothly for the more
treble ones—has been found in the latter instrument. This 1:9·2 ratio is signalled by some
researchers as one of the common relationships for the third partial of marimba bars [5].

All of the frequency ratios feature the common property of a gradual decrease for the
higher tone bars. Accordingly, the undercut process is useful not only for achieving
harmonic relationships but is also very important for increasing the logarithmic frequency
step between two consecutive resonances of each bar.

Figure 4. Values for the relationships between the frequencies of the natural bending eigenmodes of xylophone
bars and the fundamental frequency shown with respect to the logarithm of the fundamental frequency of each
bar. W, f2/f1; w, f3/f1; Q, f4/f1; q, f5/f1.
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3.2.  

Concerning the data obtained on input admittances, the most interesting results are the
values of this magnitude for the fundamental eigenmode measured at the centre and at
one end of each xylophonic bar. As a particular case in Figure 5 is shown the input
admittance of the first eigenmode at the centre of each bar versus the logarithm of its
fundamental frequency. For these measurements, both the accelerometer and magnet were
located in the middle of the central line of the bar. As in the case of the spectra
corresponding to Figure 3, the absolute values of the input admittance are presented in
the decibel scale related to the reference of 1 m s−1 N−1.

A decrease in input admittance can be seen for higher frequency bars. This kind of
behaviour is typical not only of xylophones but also of any kind of musical instrument:
the higher the frequency tones desired, the smaller are the geometrical parameters of the
vibrating element. Consequently, short bars are unable to reach vibrational amplitudes as
great as those corresponding to low tone bars. In xylophones it is specially important that
this unavoidable decrease in amplitude should exhibit smooth behaviour over the musical
range of the instrument. Nevertheless, certain sharp changes in input admittance between
consecutive bars often occur in xylophones, although, finally, they are mitigated by the
effect of the resonators (metal tubes).

The effect of undercut shape is noticeable in the equal or higher values shown by the
input admittance at the centre of each bar than at its ends [7]. Thus, the undercut process
improves the pattern of vibration of xylophonic bars in order to respond more strongly
to attack by the mallet and to be more efficient as a radiator. Moreover, the increase in
vibrational amplitude at the centre of the bar is always desirable because the mallet is often
used to beat the bar from its ends towards its centre to achieve expressive effects, such
as in crescendo.

Finally, with regard to the measured values of input admittances for overtones, these
are much smaller than those corresponding to the fundamental. This does not mean
however, that the role of overtones can be dismissed as negligible; rather, by using

Figure 5. Values for the input admittance of the first eigenmode at the centres of xylophone bars shown versus
the logarithms of their fundamental frequencies.
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hard-headed mallets and hitting with them at certain points, overtones can be very strongly
reinforced.

3.3. 

If one wished to study the damping of the sound provided by a musical instrument
properly, it would be necessary to take into account the mechanical coupling among the
vibrating elements of the instruments and its resonator elements. Measurements of the
output sound generated by the musical instruments would be required for such a purpose.
However, in this work, only the generating of this sound at the bars of the xylophone has
been studied.

Measurements have consisted only of the bandwidth of each resonance. From these data
the decay time can be calculated. This magnitude has been finally used because it is related
to the damping more closely than bandwidths. In Figure 6 is given a plot of the decay
time for the two first flexural eigenmodes of each xylophone bar against the fundamental
eigenfrequency. It can be observed that the decay time decreases for higher frequency bars;
in other words, the decay of the resonances corresponding to these bars is faster. The
reason for this is similar to that given to explain the decrease in input admittance: the
higher the frequency desired, the smaller the vibrating element used. Consequently, the
decay of the oscillations will be faster. With respect to this increase in damping versus the
first frequency of the bar, in order to obtain a smooth increase in damping from low to
high frequency bars it is very important that there should be no sharp steps between
consecutive bars. This is the general kind of behaviour shown in Figure 6.

It can also be stated that the decay times for the first overtones are lower than those
corresponding to the fundamental frequency. This is why in the output sound produced
by the xylophone the overtones tend to vanish before the fundamental.

By using the data obtained for the bandwidths, the quality factor (Q) for the
fundamental resonance of each bar can also be calculated. For the palissandre bars of the
xylophone analyzed here, the average of Q is 200 for the fundamental frequency. This is
a very high Q value in comparison with the values obtained for other kinds of wood. It
means that palissandre is highly suitable for avoiding a sharp damping of the sound after

Figure 6. Values for the logarithm of the decay time corresponding to the two first natural bending eigenmodes
corresponding to xylophone bars versus the logarithms of their fundamental frequencies. W, Decay time for the
first eigenmode; w, Decay time for the second eigenmode.
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impact by the mallet, which is well withstood by the bar owing to the high density and
stiffness of palissandre wood [9] (r=1050 kg/m3, E=19 GPa).

3.4.  

Finally, by taking the above results into account the tuning system used in this musical
instrument can be studied. In most cases, xylophones are tuned to a tempered scale and
their bars are situated on two levels, the higher one for altered notes and the lower one
for natural nodes. Nevertheless, in Chinese and old African xylophones the bars are
located on only one level and are usually tuned to a pentatonic scale. The study of the
tuning system used in the instrument examined here will not be quite exact, because an
approximation will be made: pitch quality will be related only to the periodicity of the
fundamental resonance, and the influence of overtones will be neglected. However, this is
quite a good approximation, because the overtones are located far away enough in
frequency with regard to the fundamental eigenmode [10]. With this approximation, it can
be observed that the tuning system is very close to the equal temperament, because the
strongest deviations registered are only of about 10% close to the frequency discrimination
of the human ear [10].

4. CONCLUSIONS

The main aim of this work has been to offer a general description of the
physico-acoustical behaviour of xylophonic instrument bars. For this objective, not only
the natural frequencies, but also the vibrational amplitudes and natural damping of the
bars have been measured. With this information it has been possible to gain a deeper
insight into the effects caused by the undercutting process on the vibrational behaviour
of xylophone bars. Thus, this process should not only be considered as a way in which
to achieve harmonic relationships between frequencies but also as a way in which to
control the relationships among all frequencies (not just the fundamental ones), and to
improve the pattern of vibrations corresponding to xylophonic bars.
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